首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1723篇
  免费   211篇
  2021年   23篇
  2016年   24篇
  2015年   38篇
  2014年   39篇
  2013年   55篇
  2012年   85篇
  2011年   64篇
  2010年   42篇
  2009年   36篇
  2008年   61篇
  2007年   68篇
  2006年   60篇
  2005年   60篇
  2004年   65篇
  2003年   67篇
  2002年   55篇
  2001年   45篇
  2000年   56篇
  1999年   40篇
  1998年   26篇
  1997年   18篇
  1996年   22篇
  1995年   18篇
  1994年   22篇
  1993年   29篇
  1992年   36篇
  1991年   45篇
  1990年   33篇
  1989年   42篇
  1988年   27篇
  1987年   44篇
  1986年   44篇
  1985年   44篇
  1984年   32篇
  1983年   24篇
  1982年   22篇
  1981年   17篇
  1980年   21篇
  1979年   24篇
  1978年   18篇
  1977年   22篇
  1976年   25篇
  1975年   41篇
  1974年   24篇
  1973年   14篇
  1972年   16篇
  1971年   12篇
  1970年   15篇
  1969年   16篇
  1967年   13篇
排序方式: 共有1934条查询结果,搜索用时 364 毫秒
991.
A novel series of nonnucleoside HCV NS5B polymerase inhibitors were prepared from (2Z)-2-(benzoylamino)-3-(5-phenyl-2-furyl)acrylic acid, a high throughput screening lead. SAR studies combined with structure based drug design focusing on the southern heterobiaryl region of the template led to the synthesis of several potent and orally bioavailable lead compounds. X-ray crystallography studies were also performed to understand the interaction of these inhibitors with HCV NS5B polymerase.  相似文献   
992.
Oculocerebrorenal syndrome of Lowe is caused by mutation of OCRL1, a phosphatidylinositol 4,5-bisphosphate 5-phosphatase localized at the Golgi apparatus. The cellular role of OCRL1 is unknown, and consequently the mechanism by which loss of OCRL1 function leads to disease is ill defined. Here, we show that OCRL1 is associated with clathrin-coated transport intermediates operating between the trans-Golgi network (TGN) and endosomes. OCRL1 interacts directly with clathrin heavy chain and promotes clathrin assembly in vitro. Interaction with clathrin is not, however, required for membrane association of OCRL1. Overexpression of OCRL1 results in redistribution of clathrin and the cation-independent mannose 6-phosphate receptor (CI-MPR) to enlarged endosomal structures that are defective in retrograde trafficking to the TGN. Depletion of cellular OCRL1 also causes partial redistribution of a CI-MPR reporter to early endosomes. These findings suggest a role for OCRL1 in clathrin-mediated trafficking of proteins from endosomes to the TGN and that defects in this pathway might contribute to the Lowe syndrome phenotype.  相似文献   
993.
994.
Dendritic cells (DCs) are highly specialized antigen-presenting cells that play an essential role in the immune response. We used the proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry to identify the protein changes that occur during differentiation of DCs from monocytes (Mo) stimulated with granulocyte macrophage colony stimulating factor/interleukin-4 (GM-CSF/IL-4) and during the maturation of immature DCs stimulated with lipopolysaccharide. Sixty-three differentially expressed proteins (+/- two-fold) were unambiguously identified with sequence coverage greater than 20%. They corresponded to only 36 different proteins, because 11 were present as 38 electrophoretic forms. Some proteins such as tropomyosin 4 and heat shock protein 71 presented differentially expressed electrophoretic forms, suggesting that many of the changes in protein expression that accompany differentiation and maturation of DCs occur in post-translationally modified proteins. The largest differences in expression were observed for actin (21-fold in Mo), Rho GDP-dissociation inhibitor 2 (20-fold in Mo), vimentin (eight-fold in immature DCs), lymphocyte-specific protein 1 (12-fold in mature DCs) and thioredoxin (14-fold in mature DCs). Several proteins are directly related to functional and morphological characteristics of DCs, such as cytoskeletal proteins (cytoskeleton rearrangement) and chaperones (antigen processing and presentation), but other proteins have not been assigned specific functions in DCs. Only a few proteins identified here were the same as those reported in proteomic studies of DCs, which used different stimuli to produce the cells (GM-CSF/IL-4 and tumor necrosis factor-alpha). These data suggest that the DC protein profile depends on the stimuli used for differentiation and especially for maturation.  相似文献   
995.
996.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   
997.
The G protein-coupled receptor (GPCR) kinase beta-adrenergic receptor (beta-AR) kinase-1 (beta-ARK1) is elevated during heart failure; however, its role is not fully understood. Beta-ARK1 contains several domains that are capable of protein-protein interactions that may play critical roles in the regulation of GPCR signaling. In this study, we developed a novel line of transgenic mice that express an amino-terminal peptide of beta-ARK1 that is comprised of amino acid residues 50-145 (beta-ARKnt) in the heart to determine whether this domain has any functional significance in vivo. Surprisingly, the beta-ARKnt transgenic mice presented with cardiac hypertrophy. Our data suggest that the phenotype was driven via an enhanced beta-AR system, as beta-ARKnt mice had elevated cardiac beta-AR density. Moreover, administration of a beta-AR antagonist reversed hypertrophy in these mice. Interestingly, signaling through the beta-AR in response to agonist stimulation was not enhanced in these mice. Thus the amino terminus of beta-ARK1 appears to be critical for normal beta-AR regulation in vivo, which further supports the hypothesis that beta-ARK1 plays a key role in normal and compromised cardiac GPCR signaling.  相似文献   
998.
Brain cells are metabolically flexible because they can derive energy from both glucose and ketone bodies (acetoacetate and beta-hydroxybutyrate). Metabolic control theory applies principles of bioenergetics and genome flexibility to the management of complex phenotypic traits. Epilepsy is a complex brain disorder involving excessive, synchronous, abnormal electrical firing patterns of neurons. We propose that many epilepsies with varied etiologies may ultimately involve disruptions of brain energy homeostasis and are potentially manageable through principles of metabolic control theory. This control involves moderate shifts in the availability of brain energy metabolites (glucose and ketone bodies) that alter energy metabolism through glycolysis and the tricarboxylic acid cycle, respectively. These shifts produce adjustments in gene-linked metabolic networks that manage or control the seizure disorder despite the continued presence of the inherited or acquired factors responsible for the epilepsy. This hypothesis is supported by information on the management of seizures with diets including fasting, the ketogenic diet and caloric restriction. A better understanding of the compensatory genetic and neurochemical networks of brain energy metabolism may produce novel antiepileptic therapies that are more effective and biologically friendly than those currently available.  相似文献   
999.

Background

Seattle Biomedical Research Institute (SBRI) as part of the Leishmania Genome Network (LGN) is sequencing chromosomes of the trypanosomatid protozoan species Leishmania major. At SBRI, chromosomal sequence is annotated using a combination of trained and untrained non-consensus gene-prediction algorithms with ARTEMIS, an annotation platform with rich and user-friendly interfaces.

Results

Here we describe a methodology used to import results from three different protein-coding gene-prediction algorithms (GLIMMER, TESTCODE and GENESCAN) into the ARTEMIS sequence viewer and annotation tool. Comparison of these methods, along with the CODON USAGE algorithm built into ARTEMIS, shows the importance of combining methods to more accurately annotate the L. major genomic sequence.

Conclusion

An improvised and powerful tool for gene prediction has been developed by importing data from widely-used algorithms into an existing annotation platform. This approach is especially fruitful in the Leishmania genome project where there is large proportion of novel genes requiring manual annotation.
  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号